Maximum likelihood estimation of Gaussian models with missing data - Eight equivalent formulations

نویسندگان

  • Anders Hansson
  • Ragnar Wallin
چکیده

In this paper we derive the maximum likelihood problem for missing data from a Gaussian model. We present in total eight different equivalent formulations of the resulting optimization problem, four out of which are nonlinear least squares formulations. Among these formulations are also formulations based on the expectation-maximization algorithm. Expressions for the derivatives needed in order to solve the optimization problems are presented. We also present numerical comparisons for two of the formulations for an ARMAX model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Likelihood Estimation of Gaussian Models with Missing Data—Eight Equivalent Formulations, Report no. LiTH-ISY-R-3013

In this paper we derive the maximum likelihood problem for missing data from a Gaussian model. We present in total eight di erent equivalent formulations of the resulting optimization problem, four out of which are nonlinear least squares formulations. Among these formulations are also formulations based on the expectation-maximization algorithm. Expressions for the derivatives needed in order ...

متن کامل

A comparison of algorithms for maximum likelihood estimation of Spatial GLM models

In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...

متن کامل

The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways

The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Maximum Likelihood

In this paper we discuss maximum likelihood estimation when some observations are missing in mixed graphical interaction models assuming a conditional Gaussian distribution as introduced by Lauritzen & Wermuth (1989). For the saturated case ML estimation with missing values via the EM algorithm has been proposed by Little & Schluchter (1985). We expand their results to the special restrictions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2012